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We experimentally verified a recently proposed technique for
the excitation of a complicated three-dimensional profile
(CARVE, completely arbitrary regional volume excitation).
CARVE is based on a generalized DANTE RF pulse sequence and
a synchronous string of gradient steps. Provided there is no limi-
tation in the number of pulses, CARVE can generate an excitation
profile of any shape with any resolution. However, hardware
limitations and sample properties restrict the number of RF pulses
and gradient steps and, thus, limit attainable resolution of the
excitation profile. We theoretically and experimentally showed
that spatial resolution can be increased by distributing a long
sequence among several CARVE experiments and summing up
their signals. This is particularly important for three-dimensional
excitation profiles where an n-fold increase in resolution requires
an n3-fold increase of the number of events in the sequence. The
potential use of three-dimensional CARVE might be in spectro-
scopic imaging where the excitation profile can be tailored to
match the shape of a selected organ or body part. © 1998 Academic

Press

Key Words: k-space trajectory; spectroscopic imaging; volume
selective excitation.

INTRODUCTION

The ultimate goal of spectroscopic imaging is to reveal the
spatial distribution of chemical species, i.e., to record NMR
spectrum as a function of spatial coordinates. For distribution
in n dimensions, one must record ann 1 1-dimensional image
where information about chemical shifts is stored in an addi-
tional dimension. For three-dimensional (3D) space, spectro-
scopic imaging requires a 4D image, which is usually time
consuming to record. Fast techniques for volume localization
provide spectroscopic information only from a single-shaped
region, usually a cube or sphere (1–6). Thus, fast techniques
for spectroscopic imaging that can excite complicated profiles
are desirable and have been proposed (7–9). We also have
proposed a technique for completely arbitrary regional volume
excitation (CARVE) in which spatial localization is achieved

by use of a generalized DANTE RF pulse sequence (10)
interleaved with gradient steps (11–13).

In this article, we present a theory and implementation of
CARVE for on-resonance spins in three dimensions. We focus
on experiments with a large number of events typical for 3D
and show that in such cases CARVE can be distributed into
several experiments with shorter sequences. Each short se-
quence excites the NMR signal in a way different from the
desired profile, but their sum generates the excitation profile
with the required resolution. Special care also is taken in the
design of the CARVE sequence, with a minimal gradient load.

THEORY

Basic Relations

Under the influence of RF fieldB1(t) (B1 5 B1x 1 iB1y)
and magnetic field gradientG(t), spatially distributed magne-
tization M0(r ) rotates from its initial equilibrium position
(along thez axis) and acquires a certain orientation in the
rotating frame of reference that is a function of spatial coor-
dinatesr and the timeT elapsed. Such magnetization can be
conveniently represented over the transverse component
M1(r , T), and the longitudinal componentMz(r , T). In the
small tip-angle approximation, the complex transverse magne-
tization,M1(r , T) (M1 5 Mx 1 iMy), can be represented as
(7, 14, 15)

M1~r , T! 5 igM0~r ! E
0

T

B1~t!exp@1ik ~t!r #dt, [1]

where k(t) is proportional to the integral of magnetic field
gradient over time

k ~t! 5 2g E
t

T

G~t9!dt9. [2]
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For the discrete case where an RF field is applied as a series
of short DANTE pulses and gradient as square steps with step
length equal to the RF pulse separation, integrals in Eqs. [1]
and [2] can be converted into corresponding sums. IfN equi-
distant pulses are delivered during the intervalT, then the
spacing between the successive RF pulses isDt 5 T/N and the
total time till l th pulse is

t l 5 lDt. [3]

Then, the integral in Eq. [2] can be replaced by the sum

k l 5 k ~t l! 5 2gDt O
j5l

N21

G j [4]

with l 5 0, . . . , N 2 1.
If the RF pulses are rectangular and their widthtp much

shorter than the pulse separationtp ! Dt, then the amplitude
B1,l can be expressed by a complex angleUl 5 u lexp(iw l) by
which magnetization is tipped from thez axis

B1,l~t! 5 5
U l

gtp
, lDt , t , lDt 1 tp

0, elsewhere.
tp ! Dt [5]

The relationship between the gradient and RF pulses and their
timing in a single event is illustrated in Fig. 1. By substituting
the general RF magnetic fieldB1(t) in Eq. [1] with the DANTE
train of short RF pulses as introduced in Eq. [5] the following
excitation profile is obtained:

PN~r ! 5
MN

1~r !

iM 0~r !
5 O

l50

N21

UN~k l!exp~1i rk l!. [6]

Due to the infinitely short RF pulses the vectorsk l are discrete,
but the real space spanned by vectorsr is continuous. To ease
the calculation of Eq. [6] we considered a special case where
an ideal profilePN(r ) is defined in aD-dimensional cube with
sideL, on a matrix ofN 5 MD equidistant pointsrn that span
a rectangular grid. The modulation vectorsk l are also equidis-
tant within aD-dimensional cube with side 2pM/L. For such
vectorsrn andk l Eq. [6] represents the discrete Fourier trans-
form, and the CARVE excitation profile becomes the discrete
Fourier transform of the short RF pulsesUN(k l) (12):

PN~r n! 5 O
l50

N21

UN~k l!exp~1i r nk l!. [7]

Conversely, the CARVE sequence that excites the desired

profile PN(rn) is the discrete inverse Fourier transform of the
discrete profile in real space

UN~k l! 5
1

N O
n50

N21

PN~r n!exp~2i r nk l!. [8]

Equation [8] shows that for excitation profilePN(rn) defined
with N spatial points one needsN RF pulsesU l andN gradient
steps (k-space coordinates).

The discrete nature of CARVE also introduces periodicity of
the profile. The profilePN(rn) periodically repeats with a
periodL in all D perpendicular spatial directions.

Distributivity of the Sequence

Because of limited gradient strength, finite gradient slew-
rate, and transverse and longitudinal relaxation times, the num-
ber of pulses in a single CARVE excitation is limited. This
may restrict the use of Eq. [8] to simple shapes. However,
linearity of the CARVE sequence enables the excitation of

FIG. 1. A single CARVE event consists of short RF pulse and a gradient
step. A short RF pulse with flip angleu, phasew, and durationtp is applied
simultaneously with the gradient step (with componentsGx, Gy, Gz equal to
the integer multiples of the gradient unit magnitudeG0) of duration Dt.
Becausetp ! Dt effects of the gradient during the RF pulse can be neglected,
and the CARVE event may be considered as an RF pulse followed by the
gradient pulse, as required by Eqs. [6] and [7].
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arbitrary shape by distributing the pulses of a long DANTE
sequence into several shorter ones, repeating the experiment
with each of these shorter sequences, and accumulating the
complex signals obtained from all these experiments. We can
rewrite Eq. [7] as

PN~r n! 5 O
s50

NE21 O
l50

NS21

UN~k s,l!exp~1i r nk s,l! 5 O
s50

NE21

PNS,s~r n!,

[9]

where summation overN coefficients is distributed amongNE

experiments each withNS pulses (elements); partial sums may
have an arbitrary number of elements, and the only condition is

O
s50

NE21

NS 5 N. [10]

Thus, the excitation profilePN(rn) defined byN elements can
be fully reconstructed by summation of all nonoverlapping
subprofilesPNS,s(rn), irrespective of their number, size, and
distribution in k-space. Distributivity of CARVE stems from
its linearity and provides a means to excite a complicated
profile with any resolution. It also provides a basis for the
excitation profile approximation when the total number of
experiments is limited.

Approximation of Excitation Profile

If the total number of available coefficientsUN9 is smaller
than the number of coefficients in the original excitation pro-
file, N9 , N (N 5 MD), then the actual profilePN9(rn)
represents only an approximation of the original profile
PN(rn). A subset ofN9 coefficients out ofN can be chosen in
many ways using different criteria. According to Parseval’s
theorem, the squared norm of ideal excitation profile\PN(rn)\2

is equal to the complete sum of squared projections of har-
monic functions on the ideal profile. Obviously, the partial sum
over selectedN9 harmonic functions gives a norm\PN9(rn)\2

lower than the squared norm of the ideal profile. However,
maximizing \PN9(rn)\2 by selectingN9 harmonic functions
with the highest projection on the ideal excitation profile gives
a profile approximation that has the volume closest to the
volume of the original. To quantify the fidelity of this approx-
imation, we introduce the resemblance factorh as a ratio of the
squared norms of the approximatePN9 and the original profile
PN

h 5
\PN9~r n!\

2

\PN~r n!\
2 5

¥ l50
N921 uU l u2

¥ l50
N21 uU l u2 , [11]

where the last ratio is derived by taking the squared norm of
Eq. [7]. Apparently the maximal resemblance factorh (0 # h

# 1) is obtained by takingN9, the largest coefficientsUl.
Indexes of selected coefficientsU l also determine a subset of
the k-space points that need to be traversed.

Determination of k-Space Walk

The order in which selectedk-space points are visited is
irrelevant for the quality of the excitation profile because the
ordering influences merely the sequence of summation of dif-
ferent terms in Eqs. [7] and [9]. However, the order ofk-space
points determines the strength of individual gradient steps
(Eqs. [4] and [13]). The longer thek-space distance between
successive pointsDk l, the larger the gradient necessary to
traverse that distance within a given intervalDt (Eq. [13]).
Because the maximum gradient strength and the slew-rate are
the limiting factors, it is desirable to find a walk through
k-space points that minimizes gradient load.

Intentionally, we try to avoid using the term “trajectory,”
because in CARVE,k-space is discrete and points are visited in
leaps rather than continuous paths. This offers an advantage
compared to continuousk-space because the problem of tra-
jectory crossing is nonexistent. The direct consequence is that
the hops between the selectedk-space points can be optimized
more freely. If allN 5 MD points from a givenk-space cube
are selected, the walk between them can mimic sequential or
spiral trajectory. However, if a subset ofN9 points (out ofN
points) is selected, other walks may be more effective. Because
there is no trajectory, hops between the points in discrete
k-space can be optimized to minimize gradient load without
any restrictions. Because the subset of selected pointsks,l

depends on the number of pointsN9 and on the actual shape of
the profile, the walk is custom designed for each case. We have
chosen to use a simulated annealing protocol (16) to find a
walk with the desired properties. The penalty function in the
simulated annealing depends on the property that should be
optimized. An obvious choice is to minimize the total walk
length. Then the penalty functionE that needs to be minimized
is

E } O
l50

N921

~Dk l!
2 [12]

with

Dk l 5 k l 2 k l11 5 2gDtG l [13]

for l 5 0, . . . , N9 2 1, wherekN9 5 0. This is equivalent to
the minimization of squared gradient load,

E } O
l50

N921

G l
2. [14]
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Such a penalty function is also justified by the proportionality
of the accumulated phase during gradient rise/fall period to the
square of the gradient amplitude. (The accumulated phase is
proportional to thek-space position; thus, an error in accumu-
lated phase propagates as an error ink-space position.) This
proportionality is based on the assumption that the gradient
increases (decreases) linearly with time during the rise/fall
period. Thus, penalty function expressed by Eqs. [12] and [14]
generates a walk that minimizes distortions caused by the finite
gradient’s time constant. Penalty functions that eliminate other
possible sources of distortions can be easily designed. Even a
coarse minimization of the penalty function is sufficient for
most practical purposes. This allows less stringent implemen-
tation of a simulated annealing protocol. For example, simu-
lated annealing with fast cooling does not find the deepest
minimum but quickly finds others that generate sufficiently
efficient walks.

Definition of Excitation Profile PN(rn)

An excitation profile is defined as a real spaceM 3 M 3 M
cube with lengthL (Fig. 2a). Here we constructed profiles as
phantoms, but in real situations the profile is derived from the
prerecorded image of the studied object. Then the profile is
constructed as one-bit image of the object where all the data
outside the region of interest are zeroed. To eliminate oscilla-
tions at the edges (Gibbs’ phenomenon), the profile can be
renormalized to an 8-bit image and smoothed. Then, the exci-
tation profilePM3(rn) is a 3D matrix defined in the (discrete)
points rn 5 (L/M)(ux, uy, uz) with coordinatesu (2M/ 2 #
u # M/ 2 2 1) relative to the matrix size and centered within
the cube

PM3~r n! 5 PM3S L

M
ux,

L

M
uy,

L

M
uzD ; P~ux, uy, uz!.

[15]

The profile is defined withM3 data points. To faithfully
reproduce the profile from the prerecorded image, CARVE
needs the same number of events,N 5 M3.

Calculation ofUN(k l)

According to Eq. [8],UN(k l) is an inverse Fourier transform
of the excitation profile (Fig. 2a). Because the excitation profile
is defined in a real space within a cube withM 3 M 3 M
elements and sizeL, the complex RF sequenceU is defined in
the M 3 M 3 M k-space cube with the length 2pM/L in
discrete pointsk l 5 (2p/L)(mx, my, mz) and discrete coor-
dinatesm (2M/ 2 # m # M/ 2 2 1)

UM3~k l! 5 UM3S2p

L
mx,

2p

L
my,

2p

L
mzD

; U~mx, my, mz!. [16]

Then, according to Eq. [8]

U~mx, my, mz! 5
1

M3 OOO
ux,uy,uz52M/ 2

M/ 221

P~ux, uy, uz!

3 expF2i
2p

M
~mxux 1 myuy 1 mzuz!G .

[17]
Synthesis of Actual Profile PN9(rn)

The original profile defined byM3 data points can be ap-
proximated withN9 points (N9 ! M3), by zeroing all but the
N9 largest U-coefficients, sayU9(mx, my, mz). Then the
discrete representation of the excitation profile (actual experi-
mental profile) is obtained by

P9~ux, uy, uz! 5 OOO
mx,my,mz52M/ 2

M/ 221

U9~mx, my, mz!

3 expF1i
2p

M
~mxux 1 myuy 1 mzuz!G .

[18]

Thus, the actual experimental profile is the discrete Fourier
transform ofU9(mx, my, mz) a matrix with sizeM3 (the same
as the original matrixU(mx, my, mz)) and which contains the
N9 largestU-coefficients preserved and zeros everywhere else
(Fig. 2a). An ideal profile without internal structure has the
largestU-coefficients clustered around thek-space origin. Af-
ter selecting theN9 largestU-coefficients, most of the zeroed
coefficients are far from the origin which makes the approxi-
mated profileP9 look like the low-pass filtered ideal profile.

Optimization of k-Space Walk

The real space and thek-space are the Fourier transform
conjugate pair spaces, and their unit vectors are related asr0k0

5 2p/M, where\r0\ 5 L/M and\k0\ 5 2p/L. An arbitrary
vector ink-spacek l, expressed over the integer coordinatesm
(2M/ 2 # m # M/ 2 2 1), is

k l 5 mx,lk x
0 1 my,lk y

0 1 mz,lk z
0 5

2p

L
m l. [19]

Then

Dk l 5
2p

L
Dm l

Dm l 5 m l 2 m l11

DmN21 5 mN21

6 l 5 0, . . . , N 2 2, [20]

where Dm’s are new integers that describe the difference
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470 SERŠA AND MACURA



between the coordinates of successive points in thek-space
walk. Substitution from Eq. [20] into Eq. [13] indicates the
gradient step magnitudeGl necessary to reach anyk-space
point

G l 5 2
2p

gDtL
Dm l 5 2G0Dm l, [21]

where the smallest gradient step depends on the size of exci-
tation windowL and the gradient step durationDt

G0 5
2p

gDtL
. [22]

Then the penalty function that minimizes gradient load accord-
ing to Eqs. [12] and [14] is

E } O
l50

N921

@~Dmx,l!
2 1 ~Dmy,l!

2 1 ~Dmy,l!
2#. [23]

Similarly, if the pulse sequence is distributed amongNE ex-
periments withNS pulses, the penalty function becomes

E } O
s50

NE21 O
l50

NS21

Gs,l
2

} O
s50

NE21 O
l50

NS21

@~Dmx,s,l!
2 1 ~Dmy,s,l!

2 1 ~Dmz,s,l!
2#. [24]

The main difference between Eqs. [23] and [24] is that in the
latter constraints between the individual segments (s ands 1
1) are removed. Because they belong to different experiments,
successive gradient steps are unrelated.

Once the set ofN9 coefficientsUl is selected, actual tip
anglesu l (measured from thez axis), and phasesw l (measured
from thex9 axis of the receiver) are calculated by use of Eq.
[17]:

U l 5 u l exp~iw l!. [25]

If the U l coefficients are selected using a squared norm (Eq.
[11]), then the events are already sorted by the tilt angle (Fig.
2b).

A sequence whose events are sorted according to the size of
the tip angle in theory is as good as any other, but in practice,

it may produce a distorted profile because of too large a
gradient load (13). To minimize the load on the gradient
system, individual events are reshuffled until the chosen pen-
alty function is minimized (Fig. 2c). This generates a sequence
of events that produces an excitation profile with minimal
distortions.

RESULTS

We present computer simulations and experimental verifi-
cation of the distributive character of the CARVE sequence
and its feasibility in three dimensions.

High Definition 2D CARVE

To demonstrate the distributive character of the CARVE
sequence we generated a complicated 2D excitation profile
ca

Rve that requires a large number of events to be reproduced
faithfully. The original profile is depicted in Fig. 3b and its
approximation with 1000 coefficients in Figs. 3c and 3e. A
sequence with 1000 events would last 0.5 s, and in practice not
much magnetization would be detected afterward. Instead of
running a 1000-pulse experiment it is better to distribute the
sequence among several experiments with a smaller number of
pulses. To push it to the end we distributed the sequence
among 1000 independent one-pulse experiments. The resulting
profile is obtained as a sum of 1000 individual subprofiles
(Figs. 3d, 3f). A comparison of Figs. 3c, 3e and 3d, 3f clearly
shows high fidelity of reproduction of a rather complicated
shape by a long CARVE sequence that is distributed among
several experiments.

Distributivity of 3D CARVE Excitation

The only difference between 2D and 3D CARVE experi-
ments is that in 3D the number of necessary coefficients is
always too large for the sequence to be executed in a single
experiment. Thus, a distribution of the sequence among several
experiments is inevitable. To demonstrate this, we performed a
series of simulations using a cubic box frame as an ideal
profile. Besides the ideal profile (N 5 `), Fig. 4a shows the
same profile approximated with a different number of Fourier
coefficientsN9. For a given profile, a fair approximation is
obtained only with a few hundred coefficients. To visualize
how additional coefficients improve the actual profile, Fig. 4a
shows the profile defined with 500 coefficients separated into
five profiles of 100 coefficients. Profiles are sorted according to
the magnitude of the coefficients. Thus, the first profile in Fig.
4b is the same as that in Fig. 4a withN9 5 100. Theother

FIG. 2. The CARVE sequence pulse design. (a) The sampled original profilePN is Fourier transformed (FT), and the set ofN9 coefficients is selected.
Fourier transform fromk-space into real space generates an approximative profilePN, which represents the best one could obtain with a given number of
coefficients. (b) Selectedk-space coefficients yield radio frequency tip angles and phases. (c) Thek-space coordinates of selected coefficients yield corresponding
gradient steps. To minimize gradient load,k-space walk is optimized by simulated annealing (SA).
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profiles, as sets of the coefficients with smaller magnitude, are
just small corrections of the one with the largest coefficients.
Their sum gives the profile from Fig. 4a withN9 5 500.
Finally, Fig. 4c shows the same 500-coefficient profile distrib-
uted again among five 100-coefficient profiles. This time, how-
ever, coefficients sets were grouped by thek-space walk opti-
mization (by simulated annealing) that distributed the largest
coefficients evenly among different subprofiles. Neither sub-
profile resembles the 500 approximation, but their sum
matches it exactly as does the sum of the subprofiles in Fig. 4b.

Thus, the distributive character of the CARVE excitation en-
ables improvement of the profile approximation by co-addition of
the result of several independent experiments. When many scans
need to be collected, for example because of low sensitivity,
improvement in the excitation profile approximation can be
achieved without prolonging the total experimental time.

Experimental Verification of Distributed 3D CARVE
Excitation

For a 500-coefficient approximation of the original cubic
frame profile (Fig. 4a), RF pulse tilt angles and phases are
calculated from the largest coefficients as depicted in Fig. 2.
The k-space coordinates of the largest 500 coefficients are
shown in Fig. 5a. The total time of 250 ms to visit allk-space
points is prohibitively long; thus, the sequence is split into 25
experiments with 20 pulses each. With use of the penalty
function expressed by Eq. [24], 25k-space walks that minimize
the gradient load are constructed (Fig. 5b); Fig. 5c shows 6
walks on an expanded scale. These determine the order of RF
pulses and gradient steps, which are shown in Fig. 5d.

Figure 6 shows the ideal (6a), simulated (6b), and experi-
mental (6c) cubic frame profiles. A good match is evident
between the simulated and experimental profiles, which dem-
onstrates the feasibility of complicated shape excitation by
distributing long CARVE sequences among several indepen-
dent experiments.

DISCUSSION

The CARVE sequence is based on the Fourier transform
relationship between the real space excitation profile and its
excitation pulse sequence (Eqs. [7] and [8]); therefore, CARVE
is also linear. Here we focus on experimental verification of the
distributive character of CARVE; we analyzed other properties
elsewhere (13). The distributive character of CARVE follows
from Eq. [7], which states that the profile in real space is

obtained by summing the effects of short RF pulses (general-
ized DANTE sequence) fired at particulark-space points. The
only restriction is the pairwise correspondence between the
complex RF anglesU andk-space coordinates; the sequence of
RF pulses and correspondingk-space points can be executed in
any order and in any combination. This means that the exper-
imental profile obtained with any subset of (U, k) pairs can be
further improved by adding subprofiles from unused (U, k)
pairs. Again, the order in which pairs are added and their
number can vary without restriction.

Extreme cases are the profile excitation in a single exper-
iment with N events (U, k) or in a series ofN experiments
each with a single (U, k) event. These cases are equivalent
theoretically, but practically thus are quite different. A
single experiment has an advantage of exciting the profile
quickly but a disadvantage is sensitivity to the hardware and
the sample limitations. On the other hand, in a series of
experiments with the single (U, k) event, neither the prop-
erties of the sample nor the properties of the hardware are
challenged, but the experiment is prohibitively time con-
suming. (For simplicity, we consider only on-resonance
magnetization and neglect the effects of the excitation band-
width.) Apparently, the suitable compromise could always
be found; the number of experiments and the number and the
distribution of the (U, k) events can be tailored to suit a
particular application. For example, recording of the13C
spectrum in natural abundance usually requires several
thousand scans. Then the spatial selectivity can be incorpo-
rated without compromising the basic experiment, by re-
placing a single excitation pulse with a single (U, k) event
and by launching a new event in every scan. On the other
hand, if one wants to record a frequency-selective proton
signal that might be acquired in a few scans, then an
excitation pulse is replaced by a sequence of (U, k) events
which can be the same or different for each scan. The
number of events depends on the required selectivity and on
the hardware properties.

CONCLUSION

We have demonstrated experimentally the feasibility of exciting a
complicated 3D profile by a CARVE sequence with arbitrarily high
resolution. The method uses the distributive character of the CARVE
sequence. The desired excitation profile is obtained as a superposition
of several subprofiles obtained in independent experiments. The
number and properties of the subprofiles can be customized for

FIG. 3. Excitation of a complicated profile in two-dimensions with 1000 one-event CARVE experiments. (a) Experimental cross section of a 5-mm NMR
tube filled with water and recorded with uniform spatial excitation. (b) Synthetic profilePN, defined as a one-bit image in a 2563 256 matrix;N 5 65,536.
(c) Approximate profilePN, obtained by 2D inverse Fourier transform of the 1000 largest coefficients from thek-space image of the original profile. (d)
Experimental excitation of profile (c). (e) Stacked plot of the 1000 coefficients profile from (c). Background noise and character distortions are due to limited
number of coefficients used. (f) Stacked plot of experimental profile (d). It is evident that the experimental profile faithfully reproduces most of the distortions
due to the limited number of coefficients.
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474 SERŠA AND MACURA



FIG. 5. The pulse sequence design for the box frame excitation profile of 500 events. (a) 500k-space points with the largestU-coefficients. (b)k-space
trajectories. (c) Six (of 25)k-space trajectories distributed into groups with 20 points each. (d) Radiofrequency pulse tilt anglesu, phasesw, and gradients. Actual
events are distributed into 25 experiments with 20 events each.
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particular applications. An approximation by which the desired pro-
file is excited can be improved by successive addition of higher order
corrections recorded in subsequent experiments. The distributive
character of the CARVE sequence increases its versatility for diverse
experiments with volume-selective excitation of arbitrarily compli-
cated shapes.

EXPERIMENTAL

Experiments were performed on a Bruker AMX 300 wide-
bore high-resolution spectrometer equipped with microimag-
ing accessories and in a 5-mm tube filled with water. Experi-
mental profiles were visualized by standard 2D or 3D spin-

FIG. 6. (a) Ideal (P`), simulated (P500), and experimental (P500) box frame excitation profiles. Skewed projection and two cross-sections are shown for
each. Time domain data from 25 different experiments are coadded in place during data acquisition. Dashed lines indicate positions at which displayed
cross-sections are taken. Cross-sections in (b) and (c) resemble the low-pass filtered cross-sections in (a) due to the low-pass filtering imposed by the criterion
for approximation of the profile (Eq. [11]).
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echo imaging sequences in which the first excitation pulse has
been replaced by the CARVE sequence. Time duration per
single event (small tip angle RF pulse plus gradient step)Dt
was kept to 500ms to eliminate the effects of finite gradient
slew rates. This also kept gradient load within 30% of the
maximal gradient, 150 vs 500 mT/m.
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